Electromagnetic Scattering Using Gpu-based Finite Difference Frequency Domain Method

نویسندگان

  • S. H. Zainud-Deen
  • E. El-Deen
  • M. S. Ibrahim
  • K. H. Awadalla
  • A. Z. Botros
چکیده

This paper presents a graphics processing based implementation of the Finite-Difference Frequency-Domain (FDFD) method, which uses a central finite differencing scheme for solving Maxwell’s equations for electromagnetics. The radar cross section for different structures in 2D and 3D has been calculated using the FDFD method. The FDFD code has been implemented for the CPU calculations and the same code is implemented for the GPU calculations using the Brook+ developed by AMD. The solution obtained by using the GPU based-code showed more than 40 times speed over the CPU code. Corresponding author: E. El-Deen ([email protected]). 352 Zainud-Deen et al.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple-GPU-Based Frequency-Dependent Finite-Difference Time Domain Formulation Using MATLAB Parallel Computing Toolbox

A parallel frequency-dependent, finite-difference time domain method is used to simulate electromagnetic waves propagating in dispersive media. The method is accomplished by using a singleprogram-multiple-data mode and tested on up to eight NVidia Tesla GPUs. The speedup using different numbers of GPUs is compared and presented in tables and graphics. The results provide recommendations for par...

متن کامل

A Study of Electromagnetic Radiation from Monopole Antennas on Spherical-Lossy Earth Using the Finite-Difference Time-Domain Method

Radiation from monopole antennas on spherical-lossy earth is analyzed by the finitedifference time-domain (FDTD) method in spherical coordinates. A novel generalized perfectly matched layer (PML) has been developed for the truncation of the lossy soil. For having an accurate modeling with less memory requirements, an efficient "non-uniform" mesh generation scheme is used. Also in each time step...

متن کامل

Electromagnetic Scattering Using the Iterative Multiregion Technique

In this work, an iterative approach using the finite difference frequency domain method is presented to solve the problem of scattering from large-scale electromagnetic structures. The idea of the proposed iterative approach is to divide one computational domain into smaller subregions and solve each subregion separately. Then the subregion solutions are combined iteratively to obtain a solutio...

متن کامل

Electromagnetic Modeling of Metamaterials

SUMMARY Metamaterials are generally defined as a class of artificial effective media which macroscopically exhibit extraordinary electromagnetic properties that may not be found in nature, and are composed of periodically structured dielectric, or magnetic, or metallic materials. This paper reviews recently developed electromagnetic modeling methods of metama-tericals and their inherent basic i...

متن کامل

Scattering Analysis of Periodic Structures Using Finite-Difference Time-Domain Method

Periodic structures are of great importance in electromagnetics due to their wide range of applications such as frequency selective surfaces (FSS), electromagnetic band gap (EBG) structures, periodic absorbers, meta-materials, and many others.The aim of this book is to develop efficient computational algorithms to analyze the scattering properties of various electromagnetic periodic structures ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009